

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2013, HIMA Paul Hildebrandt GmbH + Co KG All rights reserved

#### Contact

HIMA contact details:

HIMA Paul Hildebrandt GmbH + Co KG

P.O. Box 1261

68777 Brühl, Germany

Phone: +49 6202 709-0 Fax: +49 6202 709-107

E-mail: info@hima.com

| Revision | Revisions                                                                                                                 | Type of change |           |
|----------|---------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| index    |                                                                                                                           | technical      | editorial |
| 4.00     | New edition for SILworX V4                                                                                                | Х              | Х         |
| 5.00     | Updated edition for SILworX V5 Revised: Table 14 and Table 15 Deleted: Three-fold redundant connector boards and X-CB 019 | Х              | Х         |
|          |                                                                                                                           |                |           |
|          |                                                                                                                           |                |           |

X-Al 32 01 Table of Contents

# **Table of Contents**

| 1                   | Introduction                                                                                  | 5               |
|---------------------|-----------------------------------------------------------------------------------------------|-----------------|
| 1.1                 | Structure and Use of the Manual                                                               | 5               |
| 1.2                 | Target Audience                                                                               | 5               |
| 1.3                 | Formatting Conventions                                                                        | 6               |
| 1.3.1<br>1.3.2      | Safety Notes<br>Operating Tips                                                                | 6<br>7          |
| 2                   | Safety                                                                                        | 8               |
| 2.1                 | Intended Use                                                                                  | 8               |
| 2.1.1<br>2.1.2      | Environmental Requirements ESD Protective Measures                                            | 8<br>8          |
| 2.2                 | Residual Risk                                                                                 | 9               |
| 2.3                 | Safety Precautions                                                                            | 9               |
| 2.4                 | Emergency Information                                                                         | 9               |
| 3                   | Product Description                                                                           | 10              |
| 3.1                 | Safety Function                                                                               | 10              |
| 3.1.1               | Reaction in the Event of a Fault                                                              | 10              |
| 3.2                 | Scope of Delivery                                                                             | 10              |
| 3.3                 | Type Label                                                                                    | 11              |
| 3.4                 | Assembly                                                                                      | 11              |
| 3.4.1               | Block Diagram                                                                                 | 12              |
| 3.4.2<br>3.4.3      | Indicators Module Status Indicators                                                           | 13<br>14        |
| 3.4.4               | System Bus Indicators                                                                         | 15              |
| 3.4.5               | I/O Indicators                                                                                | 15              |
| 3.5                 | Product Data                                                                                  | 16              |
| 3.6                 | Connector Boards                                                                              | 18              |
| 3.6.1               | Mechanical Coding of Connector Boards                                                         | 18              |
| 3.6.2<br>3.6.3      | Coding of X-CB 008 Connector Boards  Pin Assignment for Connector Boards with Screw Terminals | 19<br>20        |
| 3.6.4               | Terminal Assignment for Connector Boards with Screw Terminals                                 | 21              |
| 3.6.5               | Pin Assignment for Connector Boards with Cable Plug                                           | 23              |
| 3.6.6               | Pin Assignment for Connector Boards with Cable Plug                                           | 24              |
| 3.6.7<br>3.6.8      | Connector Board Redundancy using Two Base Plates Pin Assignment for X-CB 008 05               | 25<br>26        |
| 3.0.0<br><b>3.7</b> | System cable                                                                                  | 20<br><b>27</b> |
| 3.7.1               | System Cable X-CA 005                                                                         | 27              |
| 3.7.2               | System Cable X-CA 009                                                                         | 28              |
| 3.7.3               | Cable Plug Coding                                                                             | 28              |
| 4                   | Start-up                                                                                      | 29              |
| 4.1                 | Mounting                                                                                      | 29              |
| 4.1.1               | Wiring Inputs Not in Use                                                                      | 29              |
| 4.2                 | Mounting and Removing the Module                                                              | 30              |
| 4.2.1               | Mounting a Connector Board                                                                    | 30              |
| 4.2.2               | Mounting and Removing the Module                                                              | 32              |

HI 801 021 E Rev. 5.00 Page 3 of 58

Table of Contents X-AI 32 01

| 4.3            | Configuring the Module in SILworX                                          | 34       |
|----------------|----------------------------------------------------------------------------|----------|
| 4.3.1          | Tab: Module                                                                | 35       |
| 4.3.2          | Tab I/O Submodule Al32_01                                                  | 36       |
| 4.3.3          | Tab I/O Submodule Al32_01: Channels                                        | 37       |
| 4.3.4          | Submodule Status [DWORD]                                                   | 39       |
| 4.3.5          | Diagnostic Status [DWORD]                                                  | 40       |
| 4.4            | Connection Variants                                                        | 41       |
| 4.4.1          | Input Wiring                                                               | 41       |
| 4.4.2          | Wiring Transmitters via Field Termination Assembly                         | 44       |
| 4.4.3          | Redundant Connection via Two Base Plates                                   | 45       |
| 4.4.4<br>4.4.5 | Ex-Protection with Zener Barriers EX-Protection with Repeater Power Supply | 46<br>46 |
| 4.4.6          | Characteristics of HART Communication                                      | 47       |
| 5              | Operation                                                                  | 48       |
|                | •                                                                          | _        |
| 5.1            | Handling                                                                   | 48       |
| 5.2            | Diagnosis                                                                  | 48       |
| 6              | Maintenance                                                                | 49       |
| 6.1            | Maintenance Measures                                                       | 49       |
| 6.1.1          | Loading the Operating System                                               | 49       |
| 6.1.2          | Proof Test                                                                 | 49       |
| 7              | Decommissioning                                                            | 50       |
| 8              | Transport                                                                  | 51       |
| 9              | Disposal                                                                   | 52       |
|                | Appendix                                                                   | 53       |
|                | Glossary                                                                   | 53       |
|                | Index of Figures                                                           | 54       |
|                | Index of Tables                                                            | 55       |
|                | Index                                                                      | 56       |
|                | IIIdex                                                                     | 30       |

Page 4 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 1 Introduction

#### 1 Introduction

The present manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module in SILworX.

#### 1.1 Structure and Use of the Manual

The content of this manual is part of the hardware description of the HIMax programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

| Name                      | Content                       | Document no. |
|---------------------------|-------------------------------|--------------|
| HIMax                     | Hardware description of the   | HI 801 001 E |
| System Manual             | HIMax system                  |              |
| HIMax                     | Safety functions of the HIMax | HI 801 003 E |
| Safety Manual             | systems                       |              |
| HIMax                     | Description of communication  | HI 801 101 E |
| Communication Manual      | and protocols                 |              |
| SILworX Online Help (OLH) | Instructions on how to use    | -            |
|                           | SILworX                       |              |
| First Steps               | Introduction to SILworX       | HI 801 103 E |

Table 1: Additional Valid Manuals

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

## 1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the devices and systems. Specialized knowledge of safety-related automation systems is required.

HI 801 021 E Rev. 5.00 Page 5 of 58

1 Introduction X-AI 32 01

## 1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

**Bold:** To highlight important parts

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics: For parameters and system variables

Courier Literal user inputs

RUN Operating state are designated by capitals

Chapter 1.2.3 Cross references are hyperlinks even though they are not particularly

marked. When the cursor hovers over a hyperlink, it changes its shape.

Click the hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

#### 1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

#### **A** SIGNAL WORD



Type and source of risk!

Consequences arising from non-observance

**Risk prevention** 

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Warning indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

#### **NOTE**



Type and source of damage! Damage prevention

Page 6 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 1 Introduction

# 1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

HI 801 021 E Rev. 5.00 Page 7 of 58

2 Safety X-AI 32 01

# 2 Safety

All safety information, notes and instructions specified in this manual must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated in accordance with SELV or PELV. No imminent danger results from the module itself. The use in Ex-Zone is permitted if additional measures are taken.

#### 2.1 Intended Use

HIMax components are designed for assembling safety-related controller systems.

When using the components in the HIMax system, comply with the following general requirements

#### 2.1.1 Environmental Requirements

| Requirement type    | Range of values                                        |
|---------------------|--------------------------------------------------------|
| Protection class    | Protection class III in accordance with IEC/EN 61131-2 |
| Ambient temperature | 0+60 °C                                                |
| Storage temperature | -40+85 °C                                              |
| Pollution           | Pollution degree II in accordance with IEC/EN 61131-2  |
| Altitude            | < 2000 m                                               |
| Housing             | Standard: IP20                                         |
| Supply voltage      | 24 VDC                                                 |

Table 2: Environmental Requirements

Exposing the HIMax system to environmental conditions other than those specified in this manual can cause the HIMax system to malfunction.

#### 2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace modules.

#### NOTE



Device damage due to electrostatic discharge!

- When performing the work, make sure that the working area is free of static and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

Page 8 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 2 Safety

#### 2.2 Residual Risk

No imminent risk results from a HIMax system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

## 2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

#### 2.4 Emergency Information

A HIMax controller is a part of the safety equipment of a system. If the controller fails, the system adopts the safe state.

In case of emergency, no action that may prevent the HIMax systems from operating safely is permitted.

HI 801 021 E Rev. 5.00 Page 9 of 58

3 Product Description X-AI 32 01

# 3 Product Description

The X-Al 32 01 analog input module is intended for use in the programmable electronic system (PES) HIMax.

The module is inserted into any of the base plate slots with the exception of the slots reserved for system bus modules. For more information, refer to the System Manual (HI 801 001 E).

The module is used to evaluate up to 32 analog input signals.

The module is TÜV-certified for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1).

Refer to the HIMax Safety Manual (HI 801 003 E) for more information on the standards used to test and certify the module and the HIMax system.

## 3.1 Safety Function

The module measures the current of the connected devices with safety-related accuracy, providing the transmitter supply with a guaranteed minimum voltage.

The safety function is performed in accordance with SIL 3.

#### 3.1.1 Reaction in the Event of a Fault

If a fault occurs, the module adopts the safe state and the assigned input variables transmit the initial value (default value = 0) to the user program.

The initial values must be set to 0 to ensure that the input variables transmit the value 0 to the user program if a fault occurs. If the raw value is evaluated instead of the process value, the user must program the monitoring function and the value in the event of faults from within the user program.

The module activates the Error LED on the front plate.

#### 3.2 Scope of Delivery

The module must be installed on a suitable connector board to be able to operate. If a Field Termination Assembly (FTA) is used, a system cable is required to connect the connector board to the FTA. Connector boards, system cables and FTAs are not included within the scope of delivery.

The connector boards are described in Chapter 3.6, the system cables are described in Chapter 3.7. The FTAs are described in own manuals.

Page 10 of 58 HI 801 021 E Rev. 5.00

#### 3.3 Type Label

The type label specifies the following important details:

- Product name
- Mark of conformity
- Bar code (2D or 1D code)
- Part number (Part-No.)
- Hardware revision index (HW Rev.)
- Software revision index (SW Rev.)
- Operating voltage (Power)
- Ex specifications (if applicable)
- Production year (Prod-Year:)



Figure 1: Sample Type Label

#### 3.4 Assembly

The module has 32 analog current inputs (0/4...20 mA), each input is measured and functionally tested using two internal measuring facilities. A short-circuit-proof transmitter supply is assigned to each input.

The 32 analog inputs can be used to evaluate the values measured for the transmitters and safety transmitters. Two-wire or three-wire transmitters with a maximum supply current of 30 mA can be connected to the module.

The functional units are galvanically separated to ensure that the input signals are interference-free.

The safety-related 10o2 processor system for the I/O module controls and monitors the I/O level. The data and states of the I/O module are made available to the processor modules via the redundant system bus. The system bus has a redundant structure for reasons of availability. Redundancy is only ensured if both system bus modules are inserted in the base plates and configured in SILworX.

The module is equipped with LEDs to indicate the status of the analog inputs, see Chapter 3.4.2.

HI 801 021 E Rev. 5.00 Page 11 of 58

# 3.4.1 Block Diagram

The following block diagram illustrates the structure of the module.

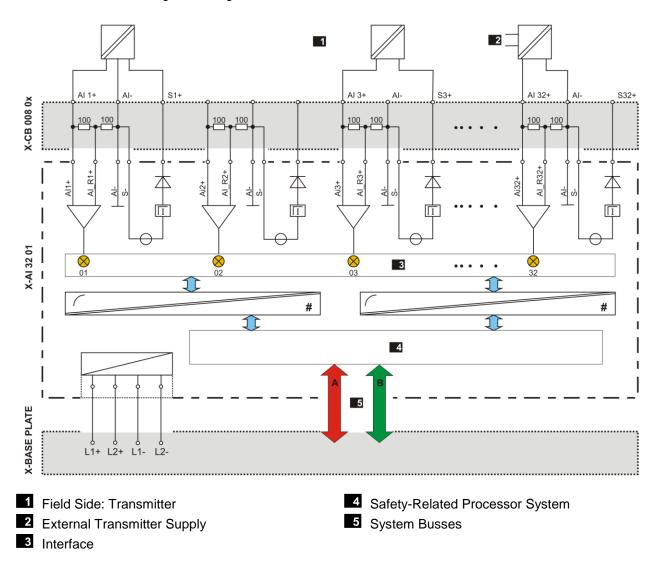



Figure 2: Block Diagram

Page 12 of 58 HI 801 021 E Rev. 5.00

# 3.4.2 Indicators

The following figure shows the LED indicators for the module.

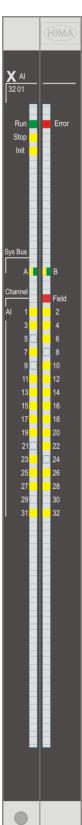



Figure 3: Indicators

HI 801 021 E Rev. 5.00 Page 13 of 58

The LEDs indicate the operating state of the module.

The LEDs on the module are divided into three groups:

- Module status indicators (Run, Error, Stop, Init)
- System bus indicators (A, B)
- I/O indicators (Al 1...32, Field)

When the supply voltage is switched on, a LED test is performed and all LEDs are briefly lit.

#### **Definition of blinking frequencies**

The following table defines the blinking frequencies of the LEDs:

| Name       | Blinking frequencies                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------|
| Blinking1  | Long (approx. 600 ms) on, long (approx. 600 ms) off                                                         |
| Blinking2  | Short (approx. 200 ms) on, short (approx. 200 ms) off, short (approx. 200 ms) on, long (approx. 600 ms) off |
| Blinking-x | Ethernet communication: Blinking synchronously with data transfer                                           |

Table 3: Blinking Frequencies of LEDs

#### 3.4.3 Module Status Indicators

These LEDs are located on the front plate, on the upper part of the module.

| LED   | Color         | Status       | Description                                                          |
|-------|---------------|--------------|----------------------------------------------------------------------|
| Run   | Green         | On           | Module in RUN, normal operation                                      |
|       |               | Blinking1    | Module state:                                                        |
|       |               |              | STOP/OS_DOWNLOAD or                                                  |
|       |               |              | OPERATE (only with processor modules)                                |
|       |               | Off          | Module not in RUN,                                                   |
|       |               |              | observe the other status LEDs                                        |
| Error | Red           | On/Blinking1 | Internal module faults detected by self-tests, e.g.,                 |
|       |               |              | hardware or voltage supply.                                          |
|       |               |              | Fault while loading the operating system                             |
|       |               | Off          | Normal operation                                                     |
| Stop  | <b>Yellow</b> | On           | Module state:                                                        |
|       |               |              | STOP / VALID CONFIGURATION                                           |
|       |               | Blinking1    | Module state:                                                        |
|       |               |              | STOP / INVALID CONFIGURATION or                                      |
|       |               |              | STOP / OS_DOWNLOAD                                                   |
|       |               | Off          | Module not in STOP, observe the other status LEDs                    |
| Init  | Yellow        | On           | Module state: INIT, observe the other status LEDs                    |
|       |               | Blinking1    | Module state: LOCKED, observe to the other status LEDs               |
|       |               | Off          | Module state: neither INIT nor LOCKED, observe the other status LEDs |

Table 4: Module Status Indicators

Page 14 of 58 HI 801 021 E Rev. 5.00

# 3.4.4 System Bus Indicators

The system bus LEDs are labeled Sys Bus.

| LED | Color  | Status    | Description                                                                             |
|-----|--------|-----------|-----------------------------------------------------------------------------------------|
| А   | Green  | On        | Physical and logical connection to the system bus module in slot 1.                     |
|     |        | Blinking1 | No physical connection to the system bus module in slot 1.                              |
|     | Yellow | Blinking1 | The physical connection to the system bus module in slot 1 has been established.        |
|     |        |           | No connection to a (redundant) processor module running in system operation.            |
| В   | Green  | On        | Physical and logical connection to the system bus module in slot 2.                     |
|     |        | Blinking1 | No physical connection to the system bus module in slot 2.                              |
|     | Yellow | Blinking1 | The physical connection to the system bus module in slot 2 has been established.        |
|     |        |           | No connection to a (redundant) processor module running in system operation.            |
| A+B | Off    | Off       | Neither physical nor logical connection to the system bus modules in slot 1 and slot 2. |

Table 5: System Bus Indicators

## 3.4.5 I/O Indicators

| LED            | Color  | Status    | Description                                                                                                                                      |
|----------------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel<br>132 | Yellow | On        | The input current is > 4 mA or greater than the HIGH switching point (dig) configured in SILworX.                                                |
|                |        | Blinking2 | Channel fault (module field or hardware fault). Input current > 20 mA                                                                            |
|                |        | Off       | The input current is < 4 mA or less than the LOW switching point (dig) configured in SILworX.                                                    |
| Field          | Red    | Blinking2 | Field fault on at least one channel or supply (open-circuit, short-circuit, over-current, etc.)  Depending on the configured current thresholds. |
|                |        | Off       | No field fault displayed!                                                                                                                        |

Table 6: I/O Indicators

HI 801 021 E Rev. 5.00 Page 15 of 58

# 3.5 Product Data

| General                      |                                                                                                                  |
|------------------------------|------------------------------------------------------------------------------------------------------------------|
| Supply voltage               | 24 VDC, -15 %+20 %, r <sub>P</sub> ≤ 5 %, SELV, PELV                                                             |
| Current input                | min. 500 mA (without channels/transmitter supplies) max. 1.5 A (if the transmitter supplies are short-circuited) |
| Current input per channel    | min. 0 mA (without transmitter supply) min. 30 mA (with transmitter supply)                                      |
| Operating temperature        | 0+60 °C                                                                                                          |
| Storage temperature          | -40+85 °C                                                                                                        |
| Humidity                     | max. 95 % relative humidity, non-condensing                                                                      |
| Type of protection           | IP20                                                                                                             |
| Dimensions (H x W x D) in mm | 310 x 29.2 x 230                                                                                                 |
| Weight                       | approx. 1.4 kg                                                                                                   |

Table 7: Product Data

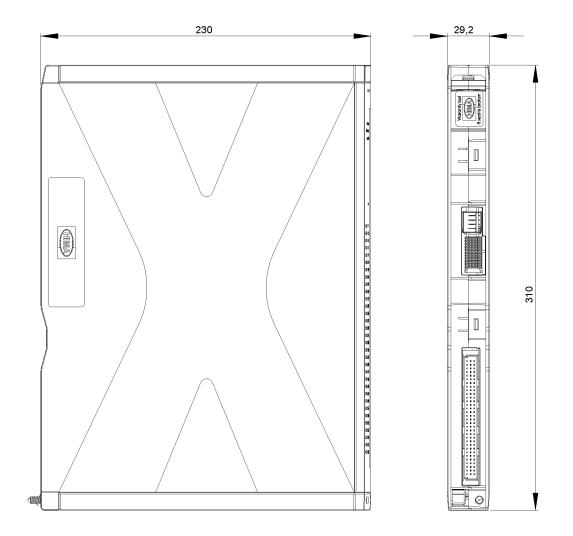



Figure 4: Views

Page 16 of 58 HI 801 021 E Rev. 5.00

| Analog inputs                                                            |                                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Number of inputs (number of channels)                                    | 32 with common ground AI-<br>(galvanic separation from the system bus and the<br>24 VDC supply voltage). |
| Nominal range                                                            | 0/420 mA                                                                                                 |
| Operating range                                                          | 022.5 mA                                                                                                 |
| Digital resolution                                                       | 12-bit                                                                                                   |
| Shunt for current measurement                                            | 200 Ω                                                                                                    |
| Maximum permitted current via shunt                                      | 50 mA                                                                                                    |
| Withstand voltage of the input                                           | ≤ 10 VDC                                                                                                 |
| Interference voltage suppression                                         | > 60 dB (common mode 50/60 Hz)                                                                           |
| Measured value renewal (in the user program)                             | Cycle time of the user program                                                                           |
| Sampling time                                                            | 2 ms                                                                                                     |
| Metrological accuracy                                                    |                                                                                                          |
| Metrological accuracy on the entire temperature range (-10 °C70 °C)      | ± 0.15 % of final value                                                                                  |
| Settling time to 99 % of the process value when the input signal changes | 15 ms                                                                                                    |

Table 8: Specifications for the Analog Inputs

| Transmitter supply                                                              |                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of transmitter supplies                                                  | 32                                                                                                                                                                                                        |
| Output voltage for transmitter supply                                           | 26.5 VDC +0/-15 %                                                                                                                                                                                         |
| Output current of transmitter supply                                            | max. 30 mA                                                                                                                                                                                                |
| Monitoring of transmitter supply                                                | Undervoltage: 22.5 VDC Overvoltage: 30 VDC                                                                                                                                                                |
| Max. number of transmitter supplies that may be simultaneously short-circuited. | If more than 12 supplies are closed for longer than 3 seconds, the entire transmitter supply is switched off.  If the overload disappears within 30 seconds, the transmitter supply is switched on again. |
| Maximum connectable load (transmitter + line)                                   | ≤ 750 Ω at 22.5 mA                                                                                                                                                                                        |

Table 9: Product Data for the Transmitter Supply

HI 801 021 E Rev. 5.00 Page 17 of 58

#### 3.6 Connector Boards

A connector board connects the module to the field zone. Module and connector board form together a functional unit. Insert the connector board into the appropriate slot prior to mounting the module.

The following connector boards are available for the module:

| Connector board | Description                                                                     |
|-----------------|---------------------------------------------------------------------------------|
| X-CB 008 01     | Connector board with screw terminals                                            |
| X-CB 008 02     | Redundant connector board with screw terminals                                  |
| X-CB 008 03     | Connector board with cable plug                                                 |
| X-CB 008 04     | Redundant connector board with cable plug                                       |
| X-CB 008 05     | Redundant connector board with cable plug, redundant field termination assembly |

Table 10: Available Connector Boards

# 3.6.1 Mechanical Coding of Connector Boards

I/O modules and connector boards are mechanically coded starting from hardware revision AS10 to prevent them from being equipped with improper I/O modules. Coding avoids incorrect installation of improper I/O modules thus preventing negative effects on redundant modules and field zone. A part from that, improper equipment has no effect on the HIMax system since only I/O modules that are correctly configured in SILworX enter the RUN state.

I/O modules and the corresponding connector boards have a mechanical coding in form of wedges. The coding wedges in the female connector of the connector board match with the male connector recesses of the I/O module plug, see Figure 5.

Coded I/O modules can only be plugged in to the corresponding connector boards.

Page 18 of 58 HI 801 021 E Rev. 5.00

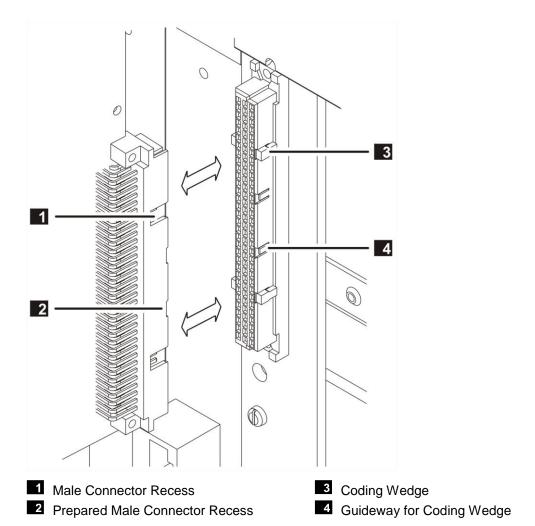



Figure 5: Coding Example

Coded I/O modules can be plugged in to uncoded connector boards. Uncoded I/O modules cannot be plugged in to coded connector boards.

# 3.6.2 Coding of X-CB 008 Connector Boards

| a7 | a13 | a20 | a26 | c7 | c13 | c20 | c26 |
|----|-----|-----|-----|----|-----|-----|-----|
|    |     | X   |     | Χ  |     | Χ   |     |

Table 11: Position of Coding Wedges

HI 801 021 E Rev. 5.00 Page 19 of 58

3 Product Description X-Al 32 01

## 3.6.3 Pin Assignment for Connector Boards with Screw Terminals

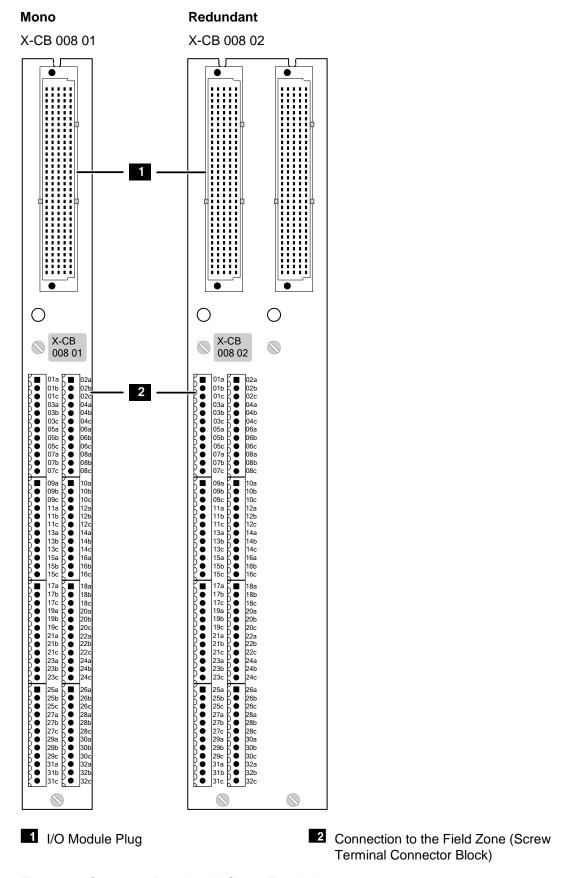



Figure 6: Connector Boards with Screw Terminals

Page 20 of 58 HI 801 021 E Rev. 5.00

# 3.6.4 Terminal Assignment for Connector Boards with Screw Terminals

| Pin no. | Designation | Signal | Pin no. | Designation | Signal |
|---------|-------------|--------|---------|-------------|--------|
| 1       | 01a         | S1+    | 1       | 02a         | S2+    |
| 2       | 01b         | Al1+   | 2       | 02b         | Al2+   |
| 3       | 01c         | Al1-   | 3       | 02c         | Al2-   |
| 4       | 03a         | S3+    | 4       | 04a         | S4+    |
| 5       | 03b         | Al3+   | 5       | 04b         | Al4+   |
| 6       | 03c         | Al3-   | 6       | 04c         | Al4-   |
| 7       | 05a         | S5+    | 7       | 06a         | S6+    |
| 8       | 05b         | Al5+   | 8       | 06b         | Al6+   |
| 9       | 05c         | Al5-   | 9       | 06c         | Al6-   |
| 10      | 07a         | S7+    | 10      | 08a         | S8+    |
| 11      | 07b         | Al7+   | 11      | 08b         | Al8+   |
| 12      | 07c         | AI7-   | 12      | 08c         | Al8-   |
| Pin no. | Designation | Signal | Pin no. | Designation | Signal |
| 1       | 09a         | S9+    | 1       | 10a         | S10+   |
| 2       | 09b         | Al9+   | 2       | 10b         | AI10+  |
| 3       | 09c         | Al9-   | 3       | 10c         | AI10-  |
| 4       | 11a         | S11+   | 4       | 12a         | S12+   |
| 5       | 11b         | Al11+  | 5       | 12b         | Al12+  |
| 6       | 11c         | Al11-  | 6       | 12c         | Al12-  |
| 7       | 13a         | S13+   | 7       | 14a         | S14+   |
| 8       | 13b         | Al13+  | 8       | 14b         | Al14+  |
| 9       | 13c         | AI13-  | 9       | 14c         | AI14-  |
| 10      | 15a         | S15+   | 10      | 16a         | S16+   |
| 11      | 15b         | AI15+  | 11      | 16b         | AI16+  |
| 12      | 15c         | AI15-  | 12      | 16c         | AI16-  |
| Pin no. | Designation | Signal | Pin no. | Designation | Signal |
| 1       | 17a         | S17+   | 1       | 18a         | S18+   |
| 2       | 17b         | Al17+  | 2       | 18b         | Al18+  |
| 3       | 17c         | Al17-  | 3       | 18c         | Al18-  |
| 4       | 19a         | S19+   | 4       | 20a         | S20+   |
| 5       | 19b         | Al19+  | 5       | 20b         | Al20+  |
| 6       | 19c         | AI19-  | 6       | 20c         | Al20-  |
| 7       | 21a         | S21+   | 7       | 22a         | S22+   |
| 8       | 21b         | Al21+  | 8       | 22b         | Al22+  |
| 9       | 21c         | Al21-  | 9       | 22c         | Al22-  |
| 10      | 23a         | S23+   | 10      | 24a         | S24+   |
| 11      | 23b         | Al23+  | 11      | 24b         | Al24+  |
| 12      | 23c         | Al23-  | 12      | 24c         | Al24-  |

HI 801 021 E Rev. 5.00 Page 21 of 58

| Pin no. | Designation | Signal | Pin no. | Designation | Signal |
|---------|-------------|--------|---------|-------------|--------|
| 1       | 25a         | S25+   | 1       | 26a         | S26+   |
| 2       | 25b         | Al25+  | 2       | 26b         | Al26+  |
| 3       | 25c         | Al25-  | 3       | 26c         | Al26-  |
| 4       | 27a         | S27+   | 4       | 28a         | S28+   |
| 5       | 27b         | Al27+  | 5       | 28b         | Al28+  |
| 6       | 27c         | Al27-  | 6       | 28c         | Al28-  |
| 7       | 29a         | S29+   | 7       | 30a         | S30+   |
| 8       | 29b         | Al29+  | 8       | 30b         | Al30+  |
| 9       | 29c         | Al29-  | 9       | 30c         | Al30-  |
| 10      | 31a         | S31+   | 10      | 32a         | S32+   |
| 11      | 31b         | Al31+  | 11      | 32b         | Al32+  |
| 12      | 31c         | Al31-  | 12      | 32c         | Al32-  |

Table 12: Terminal Assignment for Connector Boards with Screw Terminals

Cable plugs attached to the connector board pin headers are used to connect to the field zone. The cable plugs feature the following properties:

| Connection to the field zone |                                                                                                                              |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cable plugs                  | 8 pieces, with 12 poles                                                                                                      |  |  |  |
| Wire cross-section           | 0.21.5 mm <sup>2</sup> (single-wire) 0.21.5 mm <sup>2</sup> (finely stranded) 0.21.5 mm <sup>2</sup> (with wire end ferrule) |  |  |  |
| Stripping length             | 6 mm                                                                                                                         |  |  |  |
| Screwdriver                  | Slotted 0.4 x 2.5 mm                                                                                                         |  |  |  |
| Tightening torque            | 0.20.25 Nm                                                                                                                   |  |  |  |

Table 13: Cable Plug Properties

Page 22 of 58 HI 801 021 E Rev. 5.00

# 3.6.5 Pin Assignment for Connector Boards with Cable Plug

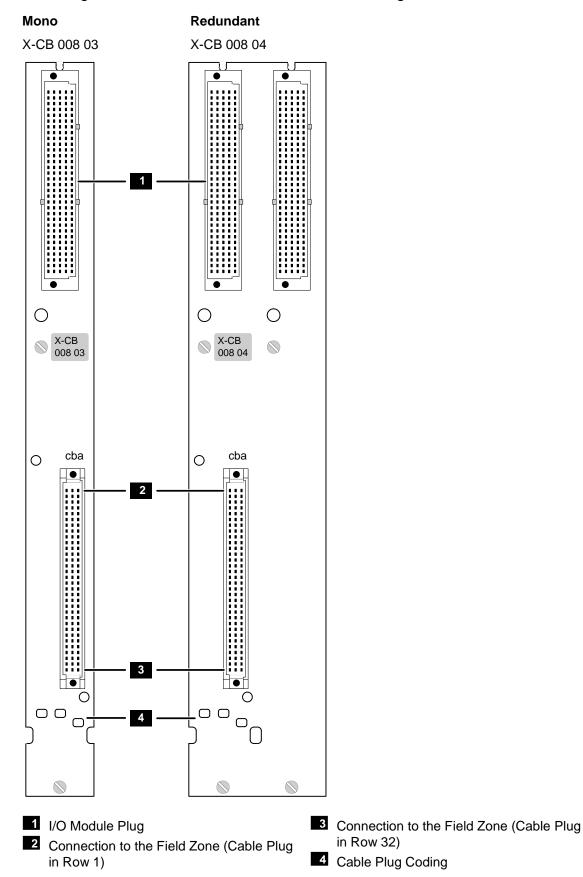



Figure 7: Connector Boards with Cable Plug

HI 801 021 E Rev. 5.00 Page 23 of 58

3 Product Description X-Al 32 01

# 3.6.6 Pin Assignment for Connector Boards with Cable Plug

HIMA provides ready-made system cables for use with these connector boards, see Chapter 3.7. The cable plug and the connector boards are coded.

# Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

Lead marking based on DIN 47100:

| Row        |                                                                  | С                  |        | b                  |          | a                   |  |  |
|------------|------------------------------------------------------------------|--------------------|--------|--------------------|----------|---------------------|--|--|
| ROW        | Signal                                                           | Color              | Signal | Color              | Signal   | Color               |  |  |
| 1          | S32+                                                             | PKBN <sup>1)</sup> | Al32+  | WHPK <sup>1)</sup> | Reserved | YEBU <sup>1)</sup>  |  |  |
| 2          | S31+                                                             | GYBN <sup>1)</sup> | Al31+  | WHGY <sup>1)</sup> | Reserved | GNBU <sup>1)</sup>  |  |  |
| 3          | S30+                                                             | YEBN <sup>1)</sup> | Al30+  | WHYE <sup>1)</sup> | Reserved | YEPK <sup>1)</sup>  |  |  |
| 4          | S29+                                                             | BNGN <sup>1)</sup> | Al29+  | WHGN <sup>1)</sup> | Reserved | PKGN <sup>1)</sup>  |  |  |
| 5          | S28+                                                             | RDBU <sup>1)</sup> | Al28+  | GYPK <sup>1)</sup> |          |                     |  |  |
| 6          | S27+                                                             | VT <sup>1)</sup>   | Al27+  | BK <sup>1)</sup>   |          |                     |  |  |
| 7          | S26+                                                             | RD <sup>1)</sup>   | Al26+  | BU <sup>1)</sup>   |          |                     |  |  |
| 8          | S25+                                                             | PK <sup>1)</sup>   | Al25+  | GY <sup>1)</sup>   |          |                     |  |  |
| 9          | S24+                                                             | YE <sup>1)</sup>   | Al24+  | GN <sup>1)</sup>   |          |                     |  |  |
| 10         | S23+                                                             | BN <sup>1)</sup>   | Al23+  | WH <sup>1)</sup>   |          |                     |  |  |
| 11         | S22+                                                             | RDBK               | Al22+  | BUBK               |          |                     |  |  |
| 12         | S21+                                                             | PKBK               | Al21+  | GYBK               |          |                     |  |  |
| 13         | S20+                                                             | PKRD               | Al20+  | GYRD               |          |                     |  |  |
| 14         | S19+                                                             | PKBU               | Al19+  | GYBU               |          |                     |  |  |
| 15         | S18+                                                             | YEBK               | Al18+  | GNBK               |          |                     |  |  |
| 16         | S17+                                                             | YERD               | AI17+  | GNRD               |          |                     |  |  |
| 17         | S16+                                                             | YEBU               | Al16+  | GNBU               |          |                     |  |  |
| 18         | S15+                                                             | YEPK               | AI15+  | PKGN               |          |                     |  |  |
| 19         | S14+                                                             | YEGY               | Al14+  | GYGN               |          |                     |  |  |
| 20         | S13+                                                             | BNBK               | Al13+  | WHBK               |          |                     |  |  |
| 21         | S12+                                                             | BNRD               | Al12+  | WHRD               |          |                     |  |  |
| 22         | S11+                                                             | BNBU               | Al11+  | WHBU               |          |                     |  |  |
| 23         | S10+                                                             | PKBN               | AI10+  | WHPK               |          |                     |  |  |
| 24         | S9+                                                              | GYBN               | Al9+   | WHGY               |          |                     |  |  |
| 25         | S8+                                                              | YEBN               | Al8+   | WHYE               | AI-      | YEGY <sup>1)</sup>  |  |  |
| 26         | S7+                                                              | BNGN               | AI7+   | WHGN               | AI-      | GYGN <sup>1)</sup>  |  |  |
| 27         | S6+                                                              | RDBU               | Al6+   | GYPK               | AI-      | BNBK <sup>1)</sup>  |  |  |
| 28         | S5+                                                              | VT                 | Al5+   | BK                 | AI-      | WHBK <sup>1)</sup>  |  |  |
| 29         | S4+                                                              | RD                 | Al4+   | BU                 | AI-      | BNRD <sup>1)</sup>  |  |  |
| 30         | S3+                                                              | PK                 | Al3+   | GY                 | AI-      | WHRD 1)             |  |  |
| 31         | S2+                                                              | YE                 | Al2+   | GN                 | AI-      | BNBU <sup>1</sup> ) |  |  |
| 32         | S1+                                                              | BN                 | Al1+   | WH                 | AI-      | WHBU <sup>1)</sup>  |  |  |
| 1) Additio | 1) Additional orange ring if one lead marking color is repeated. |                    |        |                    |          |                     |  |  |

Table 14: Pin Assignment for the System Cable Plug

Page 24 of 58 HI 801 021 E Rev. 5.00

# 3.6.7 Connector Board Redundancy using Two Base Plates

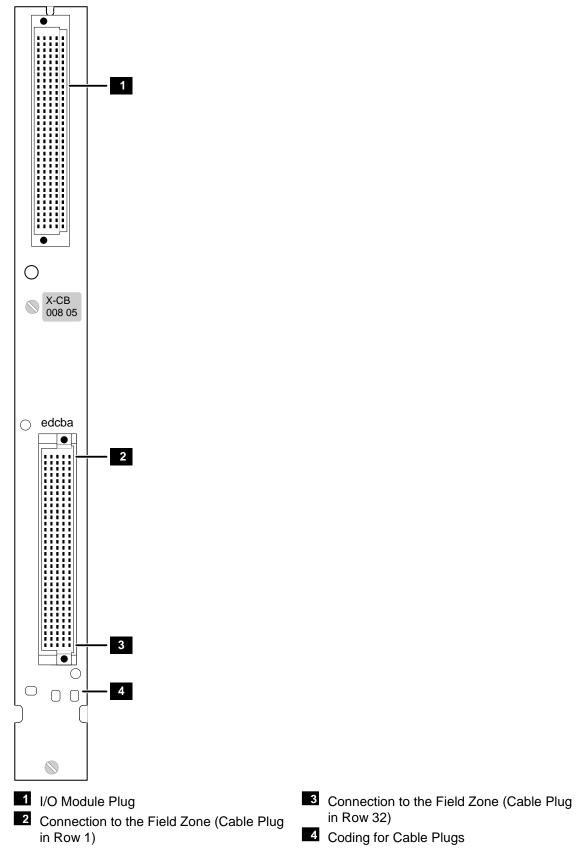



Figure 8: Connector Board with Cable Plug, Variant X-CB 008 05

HI 801 021 E Rev. 5.00 Page 25 of 58

## 3.6.8 Pin Assignment for X-CB 008 05

HIMA provides ready-made system cables for use with this connector board, see Chapter 3.7. The cable plug and the connector boards are coded.

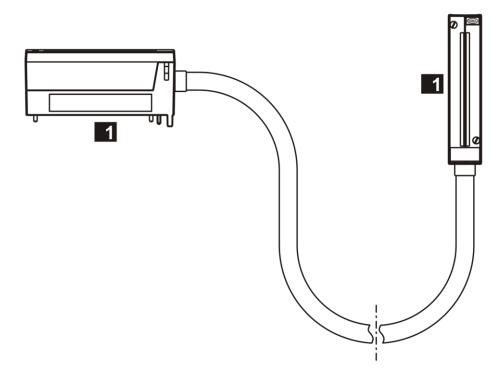
# Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

Lead marking based on DIN 47100.

| D ***** | е      |                    | d       |                    | С      |                    | b      |                    | а       |                    |
|---------|--------|--------------------|---------|--------------------|--------|--------------------|--------|--------------------|---------|--------------------|
| Row     | Signal | Color              | Signal  | Color              | Signal | Color              | Signal | Color              | Signal  | Color              |
| 1       | S32+   | RD <sup>2)</sup>   | AI_R32+ | PKBN <sup>1)</sup> | Al32+  | WHBK <sup>1)</sup> |        |                    | reserv. | YEGY <sup>2)</sup> |
| 2       | S31+   | BU <sup>2)</sup>   | AI_R31+ | GYBN <sup>1)</sup> | Al31+  | WHGY <sup>1)</sup> |        |                    | reserv. | GYGN <sup>2)</sup> |
| 3       | S30+   | PK <sup>2)</sup>   | AI_R30+ | YEBN <sup>1)</sup> | Al30+  | WHYE <sup>1)</sup> |        |                    | reserv. | BNBK <sup>2)</sup> |
| 4       | S29+   | GY <sup>2)</sup>   | AI_R29+ | BNGN <sup>1)</sup> | Al29+  | WHGN <sup>1)</sup> |        |                    | reserv. | WHBK <sup>2)</sup> |
| 5       | S28+   | YE <sup>2)</sup>   | AI_R28+ | RDBU <sup>1)</sup> | Al28+  | GYPK <sup>1)</sup> |        |                    |         |                    |
| 6       | S27+   | GN <sup>2)</sup>   | AI_R27+ | VT <sup>1)</sup>   | Al27+  | BK <sup>1)</sup>   |        |                    |         |                    |
| 7       | S26+   | BN <sup>2)</sup>   | AI_R26+ | RD <sup>1)</sup>   | Al26+  | BU <sup>1)</sup>   |        |                    |         |                    |
| 8       | S25+   | WH <sup>2)</sup>   | AI_R25+ | PK <sup>1)</sup>   | Al25+  | GY <sup>1)</sup>   |        |                    |         |                    |
| 9       | S24+   | RDBK <sup>1)</sup> | AI_R24+ | YE <sup>1)</sup>   | Al24+  | GN <sup>1)</sup>   |        |                    |         |                    |
| 10      | S23+   | BUBK <sup>1)</sup> | AI_R23+ | BN <sup>1)</sup>   | Al23+  | WH <sup>1)</sup>   |        |                    |         |                    |
| 11      | S22+   | PKBK <sup>1)</sup> | AI_R22+ | RDBK               | Al22+  | BUBK               |        |                    |         |                    |
| 12      | S21+   | GYBK <sup>1)</sup> | AI_R21+ | PKBK               | Al21+  | GYBK               |        |                    |         |                    |
| 13      | S20+   | PKRD <sup>1)</sup> | AI_R20+ | PKRD               | Al20+  | GYRD               |        |                    |         |                    |
| 14      | S19+   | GYRD <sup>1)</sup> | AI_R19+ | PKBU               | AI19+  | GYBU               |        |                    |         |                    |
| 15      | S18+   | PKBU <sup>1)</sup> | AI_R18+ | YEBK               | AI18+  | GNBK               |        |                    |         |                    |
| 16      | S17+   | GYBU <sup>1)</sup> | AI_R17+ | YERD               | AI17+  | GNRD               |        |                    |         |                    |
| 17      | S16+   | YEBK <sup>1)</sup> | AI_R16+ | YEBU               | AI16+  | GNBU               | S-     | BNRD <sup>2)</sup> |         |                    |
| 18      | S15+   | GNBK <sup>1)</sup> | AI_R15+ | YEPK               | AI15+  | PKGN               | S-     | WHRD <sup>2)</sup> |         |                    |
| 19      | S14+   | YERD <sup>1)</sup> | AI_R14+ | YEGY               | AI14+  | GYGN               | S-     | BNBU <sup>2)</sup> |         |                    |
| 20      | S13+   | GNRD <sup>1)</sup> | AI_R13+ | BNBK               | AI13+  | WHBK               | S-     | WHBU <sup>2)</sup> |         |                    |
| 21      | S12+   | YEBU <sup>1)</sup> | AI_R12+ | BNRD               | AI12+  | WHRD               | S-     | PKBN <sup>2)</sup> |         |                    |
| 22      | S11+   | GNBU <sup>1)</sup> | AI_R11+ | BNBU               | AI11+  | WHBU               | S-     | WHPK <sup>2)</sup> |         |                    |
| 23      | S10+   | YEPK <sup>1)</sup> | AI_R10+ | PKBN               | AI10+  | WHPK               | S-     | GYBN <sup>2)</sup> |         |                    |
| 24      | S9+    | PKGN <sup>1)</sup> | AI_R9+  | GYBN               | Al9+   | WHGY               | S-     | WHGY <sup>2)</sup> |         |                    |
| 25      | S8+    | YEGY <sup>1)</sup> | AI_R8+  | YEBN               | Al8+   | WHYE               | AI-    | YEBN <sup>2)</sup> |         |                    |
| 26      | S7+    | GYGN <sup>1)</sup> | AI_R7+  | BNGN               | Al7+   | WHGN               | AI-    | WHYE <sup>2)</sup> |         |                    |
| 27      | S6+    | BNBK <sup>1)</sup> | AI_R6+  | RDBU               | Al6+   | GYPK               | AI-    | BNGN <sup>2)</sup> |         |                    |
| 28      | S5+    | WHBK <sup>1)</sup> | AI_R5+  | VT                 | Al5+   | BK                 | AI-    | WHGN <sup>2)</sup> |         |                    |
| 29      | S4+    | BNRD <sup>1)</sup> | AI_R4+  | RD                 | Al4+   | BU                 | AI-    | RDBU <sup>2)</sup> |         |                    |
| 30      | S3+    | WHRD <sup>1)</sup> | AI_R3+  | PK                 | Al3+   | GY                 | AI-    | GYPK <sup>2)</sup> |         |                    |
| 31      | S2+    | BNBU <sup>1)</sup> | AI_R2+  | YE                 | Al2+   | GN                 | AI-    | YT <sup>2)</sup>   |         |                    |
| 32      | S1+    | WHBU <sup>1)</sup> | AI_R1+  | BN                 | Al1+   | WH                 | AI-    | BK <sup>2)</sup>   |         |                    |

Additional orange ring if one lead marking color is repeated for the first time.


Table 15: Pin Assignment for the System Cable Plug

Page 26 of 58 HI 801 021 E Rev. 5.00

Additional violet ring if one lead marking color is repeated for the second time.

# 3.7 System cable

The system cables are used to wire the connector boards with the field zone via field termination assemblies or inline terminals.



1 Identical Cable Plugs

Figure 9: System Cable

Depending on the type of connector board, two different types of system cables are available.

# 3.7.1 System Cable X-CA 005

The X-CA 005 system cable is used to connect the X-CB 008 03/04 connector boards to the field zone via field termination assemblies or inline terminals.

| General                    |                                                                               |
|----------------------------|-------------------------------------------------------------------------------|
| Cable                      | LIYCY-TP 38 x 2 x 0.25 mm <sup>2</sup>                                        |
| Wire                       | Finely stranded                                                               |
| Average outer diameter (d) | approx. 16.8 mm<br>max. 20 mm for all types of system cables                  |
| Minimum bending radius     |                                                                               |
| Fixed installation         | 5 x d                                                                         |
| Flexible application       | 10 x d                                                                        |
| Combustion behavior        | Flame resistant and self-extinguishing in accordance with IEC 60332-1-2, -2-2 |
| Length                     | 530 m                                                                         |
| Color coding               | Based on DIN 47100, see Table 14.                                             |

Table 16: Cable Data X-CA 005

HI 801 021 E Rev. 5.00 Page 27 of 58

The system cable is available in the following standard length:

| System cable   | Description                     | Length |
|----------------|---------------------------------|--------|
| X-CA 005 01 8  | Coded cable plugs on both sides | 8 m    |
| X-CA 005 01 15 |                                 | 15 m   |
| X-CA 005 01 30 |                                 | 30 m   |

Table 17: Available System Cables X-CA 005

## 3.7.2 System Cable X-CA 009

The X-CA 009 system cable is used to connect the X-CB 008 05 connector board to the field zone via field termination assemblies.

| General                    |                                                                               |
|----------------------------|-------------------------------------------------------------------------------|
| Cable                      | LIYCY-TP 58 x 2 x 0.14 mm <sup>2</sup>                                        |
| Wire                       | Finely stranded                                                               |
| Average outer diameter (d) | approx. 18.3 mm max. 20 mm for all types of system cables                     |
| Minimum bending radius     |                                                                               |
| Fixed installation         | 5 x d                                                                         |
| Flexible application       | 10 x d                                                                        |
| Combustion behavior        | Flame resistant and self-extinguishing in accordance with IEC 60332-1-2, -2-2 |
| Length                     | 830 m                                                                         |
| Color coding               | Based on DIN 47100, see Table 15.                                             |

Table 18: Cable Data X-CA 009

The system cable is available in the following standard length:

| System cable   | Description                     | Length |
|----------------|---------------------------------|--------|
| X-CA 009 01 8  | Coded cable plugs on both sides | 8 m    |
| X-CA 009 01 15 |                                 | 15 m   |
| X-CA 009 01 30 |                                 | 30 m   |

Table 19: Available System Cables X-CA 009

## 3.7.3 Cable Plug Coding

The cable plugs are equipped with three coding pins. Cable plugs only match connector boards and FTAs with the corresponding recesses, see Figure 7 and Figure 8.

Page 28 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 4 Start-up

# 4 Start-up

This chapter describes how to install, configure and connect the module. For more information, refer to HIMax System Manual (HI 801 001 E).

The safety-related application (SIL 3 in accordance with IEC 61508) of the inputs and the sensors connected must comply with the safety requirements. For more information, refer to the HIMax Safety Manual.

#### 4.1 Mounting

Observe the following points when mounting the module:

- Only operate the module with the appropriate fan components. For more information, see the System Manual (HI 801 001 E).
- Only operate the module with the suitable connector board. For more information, see Chapter 3.6.
- The module and its connected components must be mounted to provide protection of at least IP20 in accordance with EN 60529: 1991 + A1: 2000.

#### **NOTE**



Damage due to incorrect wiring!

Failure to comply with these instructions can damage the electronic components. Observe the following points.

- Plugs and terminals connected to the field zone.
  - Take the appropriate earthing measures when connecting the plugs and terminals to the field zone.
  - Use shielded cables with twisted pairs.
  - Connect one twisted pair of the shielded cable to each of the measurement inputs.
  - On the module side, the shielding must be connected to the cable shield rail (use SK 20 shield connection terminal block or similar).
  - When using stranded wires, HIMA recommends fastening ferrules to the wire ends. The terminals must be suitable for fastening the cross-sections of the cables in use.
- If the transmitter supply is used, use the one assigned to the input, e.g., S1+ with Al1+.
- HIMA recommends using the transmitter supply of the module.
   Failure of an external supply or measurement unit can lead to overload and damage of the affected measurement input on the module.
   If an external supply is used for the given application, check the zero and final values following a non-transient overload!
- The inputs may be wired redundantly using the corresponding connector boards, see Chapter 3.6.

#### 4.1.1 Wiring Inputs Not in Use

Inputs that are not being used may stay open and need not be terminated. However, to prevent short-circuits, never connect a wire to a connector board if it is open on the field zone.

HI 801 021 E Rev. 5.00 Page 29 of 58

4 Start-up X-AI 32 01

# 4.2 Mounting and Removing the Module

When replacing an existing module or mounting a new one, follow the instructions given in this chapter.

When removing the module, the connector board remains in the HIMax base plate. This saves additional wiring effort since all field terminals are connected via the connector board of the module.

#### 4.2.1 Mounting a Connector Board

Tools and utilities

- Screwdriver, cross PH 1 or slotted 0.8 x 4.0 mm
- Matching connector board

#### To install the connector board

- 1. Insert the connector board into the guiding rail with the groove facing upwards (see following figure). Fit the groove into the guiding rail pin.
- 2. Place the connector board on the cable shield rail.
- 3. Secure the captive screws to the base plate. First screw in the lower screws than the upper ones.

#### To remove the connector board

- 1. Release the captive screws from the base plate.
- 2. Carefully lift the lower section of the connector board from the cable shield rail.
- 3. Remove the connector board from the guiding rail.

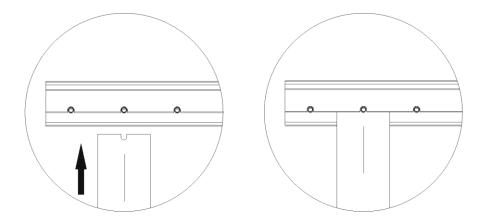



Figure 10: Example of how to Insert the Mono Connector Board

Page 30 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 4 Start-up

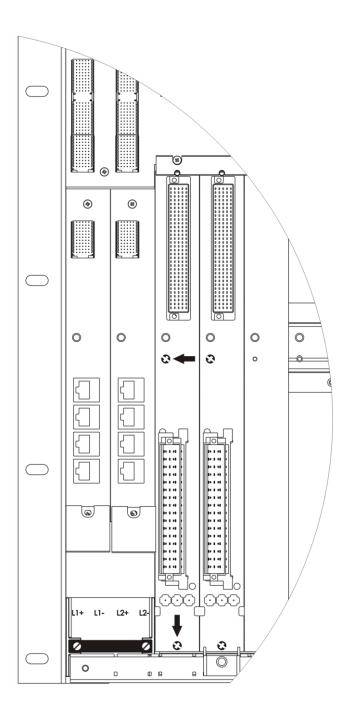



Figure 11: Example of how to Secure the Mono Connector Board with Captive Screws

These instructions also apply for redundant connector boards. The number of slots used varies in accordance with the connector board type. The number of captive screws depends on the connector board type.

HI 801 021 E Rev. 5.00 Page 31 of 58

4 Start-up X-AI 32 01

## 4.2.2 Mounting and Removing the Module

This chapter describes how to mount and remove the HIMax module. A module can be mounted and removed while the HIMax system is operating.

#### NOTE



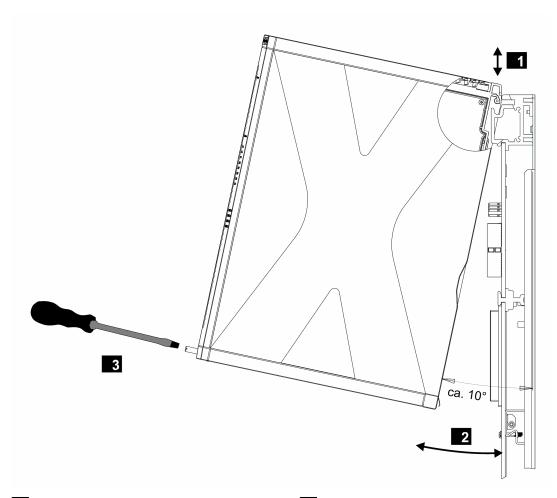
Damage to bus and power sockets due to module jamming! Failure to observe this can damage the controller.

Always take care when inserting the module in the base plate.

#### Tools and utilities

- Screwdriver, slotted 0.8 x 4.0 mm
- Screwdriver, slotted 1.2 x 8.0 mm

#### Installation


- 1. Open the cover plate on the fan rack:
  - ☑ Move the locks to the *open* position.
  - ☑ Lift the cover plate and insert into the fan rack
- 2. Insert the top of the module into the hook-in rail, see 1.
- 3. Swivel the lower edge of the module towards the base plate and apply light pressure to snap it into place, see 2.
- 4. Tighten the screws, see 3.
- 5. Pull the cover plate out of the fan rack and close it.
- 6. Lock the cover plate.

#### Removal

- 1. Open the cover plate on the fan rack:
  - ☑ Move the locks to the *open* position.
  - ☑ Lift the cover plate and insert into the fan rack
- 2. Release the screw 3.
- 3. Swivel the lower edge of the module away from the base plate. Lift and apply light pressure to remove the module from the hook-in rail, see 2 and 1.
- 4. Pull the cover plate out of the fan rack and close it.
- 5. Lock the cover plate.

Page 32 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 4 Start-up



- Inserting and Removing a Module
- 2 Swiveling a Module in and out
- 3 Securing and Releasing a Module

Figure 12: Mounting and Removing a Module

If the HIMax system is operating, do not open the cover plate of the fan rack for more than a few minutes (< 10 min) since this affects the forced cooling.

HI 801 021 E Rev. 5.00 Page 33 of 58

4 Start-up X-AI 32 01

#### 4.3 Configuring the Module in SILworX

The module is configured in the Hardware Editor of the SILworX programming tool.

Observe the following points when configuring the module:

- To diagnose the module and channels, both the statuses and the measured value can be evaluated within the user program. For more information on the statuses and parameters, refer to the tables starting with Chapter 4.3.1.
- If the 0 value is within the valid measuring range, the user program must evaluate the -> Channel OK status in addition to the -> raw value. This and other diagnostic statuses (such as short-circuits and open-circuits) allow the user to diagnose the external wiring and configure fault reactions in the user program.
- For monitoring short-circuit and open-circuit, two thresholds are detected by the module. The switching thresholds are configurable through the configuration of the module in SILworX. By default, the limits are set to the OC/SC values specified in NAMUR, Recommendation NE 43.
- If the transmitter supply of the module is used (i.e., Supply ON parameter), the Sup. used parameter must also be activated for the corresponding channel. To diagnose the transmitter supply in use, the status -> Supply OK can be evaluated within the user program. For more information on these system parameters, see Table 21 and Table 22.
- If a redundancy group is created, its configuration is defined in the tabs. The tabs specific to the redundancy group differ from those of the individual modules, see the following tables.

The transmitter supply is monitored.

If a fault occurs in the transmitter supply, the module reports a channel fault and sets the process value to the initial value of the connected global variables.

To evaluate the statuses from within the user program, the system parameters are assigned global variables. Perform this step in the Hardware Editor using the module's detail view.

The following tables present the statuses and parameters for the module in the same order given in the SILworX Hardware Editor.

TIP

To convert hexadecimal values to bit strings a scientific calculator such as the Windows<sup>®</sup> calculator with the corresponding view can be used.

Page 34 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 4 Start-up

# 4.3.1 Tab: Module

The **Module** tab contains the statuses and parameters for the module:

| Name                 |              | R/W       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Enter these statuses | and parame   | ters dire | ectly in the Hardware Editor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Name                 | · ·          | W         | Module name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Spare Module W       |              | W         | Activated: The module missing in the redundancy group is not considered as a fault.  Deactivated: The module missing in the redundancy group is considered as a fault.  Default setting: Deactivated  It is only displayed in the redundancy group tab!                                                                                                                                                                                                                                      |  |  |  |
| Noise Blanking W     |              |           | Noise blanking performed by processor module allowed (activated/deactivated).  Default setting: Activated  The processor modules defers the reaction to detected transient faults until the safety time has expired. The user program retains its last valid process value.  Refer to the System Manual (HI 801 001 E) for more details about noise blanking.                                                                                                                                |  |  |  |
| Name                 | Data<br>type | R/W       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                      |              |           | an be assigned global variables and used in the user program.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Module OK            | BOOL         | R         | TRUE: Mono operation: No module faults. Redundant operation: At least one of the redundant modules is faultless (OR logic).  FALSE: Module fault Channel fault (no external faults) The module is not plugged in.  Observe the Module Status parameter!                                                                                                                                                                                                                                      |  |  |  |
| Module Status        | DWORD        | R         | Status of the module  Coding  Description  0x00000001  Module fault 1)  0x00000002  Temperature threshold 1 exceeded  0x00000004  Temperature threshold 2 exceeded  0x00000008  Incorrect temperature value  0x00000010  Voltage on L1+ is defective  0x00000020  Voltage on L2+ is defective  x000000040  Internal voltage is defective  0x80000000  No connection to the module 1)  1)  These faults affect the Module OK status and need not be separately evaluated in the user program. |  |  |  |
| Timestamp [µs]       | DWORD        | R         | Microsecond fraction of the timestamp.  Point in time at which the analog inputs were measured.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Timestamp [s]        | DWORD        | R         | Second fraction of the timestamp.  Point in time at which the analog inputs were measured.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

Table 20: Module Tab in the Hardware Editor

HI 801 021 E Rev. 5.00 Page 35 of 58

4 Start-up X-AI 32 01

# 4.3.2 Tab I/O Submodule Al32\_01

The I/O Submodule Al32 01 tab contains the following statuses and parameters:

| Name                                                                                                 |           | R/W | Description                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enter these statuses and parameters directly in the Hardware Editor.                                 |           |     |                                                                                                                                                                                                                                                                                                                                             |
| Name                                                                                                 |           | R   | Module name                                                                                                                                                                                                                                                                                                                                 |
| Supply ON                                                                                            |           | W   | Use the transmitter supplies of the module. Activated: Transmitter supplies for channels 132 activated. Deactivated: Transmitter supplies for channels 132 deactivated. Default setting: Activated                                                                                                                                          |
| Show Signal Overflow                                                                                 |           | W   | The Field LED displays a potential signal overflow. Activated: Show signal overflow activated. Deactivated: Show signal overflow deactivated Default setting: Activated                                                                                                                                                                     |
| Show Supply Overcurrent                                                                              |           | W   | Show supply overcurrent with <i>Field</i> LED. Activated: Show supply overcurrent activated. Deactivated: Show supply overcurrent deactivated. Default setting: Activated                                                                                                                                                                   |
| Name                                                                                                 | Data type | R/W | Description                                                                                                                                                                                                                                                                                                                                 |
| The following statuses and parameters can be assigned global variables and used in the user program. |           |     |                                                                                                                                                                                                                                                                                                                                             |
| Diagnostic Request                                                                                   | DINT      | W   | To request a diagnostic value, the appropriate ID must be sent to the module using the parameter <i>Diagnostic Request</i> (see Chapter 4.3.5 for coding details).                                                                                                                                                                          |
| Diagnostic Response                                                                                  | DINT      | R   | As soon as <i>Diagnostic Response</i> returns the ID of <i>Diagnostic Request</i> (see 4.3.5 for coding details), <i>Diagnostic Status</i> contains the diagnostic value requested.                                                                                                                                                         |
| Diagnostic Status                                                                                    | DWORD     | R   | Requested diagnostic value in accordance with <i>Diagnostic Response</i> .  The IDs of <i>Diagnostic Request</i> and <i>Diagnostic Response</i> can be evaluated in the user program. <i>Diagnostic Status</i> only contains the requested diagnostic value when both Diagnostic Request and Diagnostic Response have the same ID.          |
| Background Test Error                                                                                | BOOL      | R   | TRUE: Background test is faulty FALSE: Background test is free of faults                                                                                                                                                                                                                                                                    |
| Restart on Error                                                                                     | BOOL      | W   | Using the parameter Restart on Error, each I/O module that has switched off permanently due to faults can be forced to re-adopt the RUN state. To do this, set the Restart on Error parameter FALSE to TRUE.  The I/O module performs a complete self-test and only enters the RUN state if no faults are detected.  Default setting: FALSE |
| Submodule OK                                                                                         | BOOL      | R   | TRUE: No submodule fault. No channel faults. FALSE: Submodule fault. Channel fault (external faults included)                                                                                                                                                                                                                               |
| Submodule Status                                                                                     | DWORD     | R   | Bit-coded submodule status (For coding details, see Chapter 4.3.4)                                                                                                                                                                                                                                                                          |

Table 21: Tab: I/O Submodule Al32\_01 in the Hardware Editor

Page 36 of 58 HI 801 021 E Rev. 5.00

### 4.3.3 Tab I/O Submodule Al32\_01: Channels

The **I/O Submodule Al32\_01:Channels** tab contains the following parameters and statuses for each analog input. Global variables can be assigned to the statuses and parameters with -> and used in the user program. The value without -> must be directly entered.

| Name                       | Data<br>type | R/W | Description                                                                                                                                                                                                                                                                              |  |
|----------------------------|--------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Channel no.                |              | R   | Channel number, preset and not changeable                                                                                                                                                                                                                                                |  |
| -> Process Value<br>[REAL] | REAL         | R   | Process value determined using the intermediate data points 4 mA and 20 mA.                                                                                                                                                                                                              |  |
| 4 mA                       | REAL         | W   | Intermediate data point used to calculate the process value on the lowest scale final value (4 mA) of the channel.  Default setting: 4.0                                                                                                                                                 |  |
| 20 mA                      | REAL         | W   | Intermediate data point used to calculate the process value on the highest scale final value (20 mA) of the channel.  Default setting: 20.0                                                                                                                                              |  |
| -> Raw Value [DINT]        | DINT         | R   | Unprocessed measured value of the channel: 0200 000 (020 mA).  If the raw value is evaluated instead of the process value, the user must program the monitoring function and the value in the event of faults from within the user program.                                              |  |
| -> Channel OK              | BOOL         | R   | TRUE: Faultless channel The input value is valid FALSE: Faulty channel The input value is set to 0.                                                                                                                                                                                      |  |
| Sup. used                  | BOOL         | W   | Activated: If a fault occurs in the transmitter supply, the module reports a channel fault and sets the input value to 0.  Deactivated: If a fault occurs in the transmitter supply, the module reports no channel fault and the input value is not defined.  Default setting: Activated |  |
| -> Sup. OK                 | BOOL         | R   | TRUE: No faults in the transmitter supply. FALSE: The transmitter supply is faulty.                                                                                                                                                                                                      |  |
| OC Limit                   | DINT         | W   | Threshold in mA for detecting an open-circuit If the analog measured value falls under <i>OC Limit</i> , the module detects an open-circuit and switches off the <i>Channel</i> LED for this channel.  Default setting: 36 000 (3.6 mA)                                                  |  |
| -> OC                      | BOOL         | R   | TRUE: One open-circuit present FALSE: No open-circuit present Defined through OC Limit                                                                                                                                                                                                   |  |
| SC Limit                   | DINT         | W   | Threshold in mA for detecting a short-circuit If the measured analog value exceeds <i>SC Limit</i> , the module detects a short-circuit and sets the <i>Channel</i> LED for this channel to Blinking2. Default setting: 213 000 (21,.3 mA)                                               |  |
| -> SC                      | BOOL         | R   | TRUE: One short-circuit present FALSE: No short-circuit present Defined through SC Limit                                                                                                                                                                                                 |  |
| SP LOW                     | DINT         | W   | Upper limit of LOW level SP LOW (switching point LOW) is the limit value: if this limit is exceeded, the module detects a LOW and switches the Channel LED off.  Restriction: SP LOW ≤ SP HIGH  Default setting: 39 500 (3,95 mA)                                                        |  |

HI 801 021 E Rev. 5.00 Page 37 of 58

| Name                    | Data<br>type | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP HIGH                 | DINT         | W   | Lower limit of high level SP HIGH (switching point HIGH) is the limit value: if this limit is exceeded, the module detects a HIGH and switches the Channel LED on.  Restriction: SP LOW ≤ SP HIGH  Default setting: 40 500 (4,05 mA)                                                                                                                                                            |
| -> Channel Value [BOOL] | [BOOL]       | R   | Boolean channel value in accordance with the limits SP LOW and SP HIGH.                                                                                                                                                                                                                                                                                                                         |
| T on [µs]               | UDINT        | W   | Time on delay The module only indicates a level change from LOW to HIGH if the HIGH level is present for longer than the configured time $t_{on}$ . Important: The maximum reaction time $T_R$ (worst case) for this channel is extended by the delay time, since a signal change is not detected until the delay time has expired. Range of values: $0(2^{32} - 1)$ Default setting: $0$       |
| T off [µs]              | UDINT        | W   | Time off delay The module only indicates a level change from HIGH to LOW if the LOW level is present for longer than the configured time $t_{\rm off}$ . Important: The maximum reaction time $T_R$ (worst case) for this channel is extended by the delay time, since a signal change is not detected until the delay time has expired.  Range of values: $0(2^{32} - 1)$ Default setting: $0$ |
| -> State LL             | BOOL         | R   | TRUE: Value associated with the LL event state FALSE: Value out of the range associated with the LL event state                                                                                                                                                                                                                                                                                 |
| -> State L              | BOOL         | R   | TRUE: Value associated with the L event state FALSE: Value out of the range associated with the L event state                                                                                                                                                                                                                                                                                   |
| -> State N              | BOOL         | R   | TRUE: Value associated with the N (normal) event state FALSE: Value out of the range associated with the N (normal) event state                                                                                                                                                                                                                                                                 |
| -> State H              | BOOL         | R   | TRUE: Value associated with the H event state FALSE: Value out of the range associated with the H event state                                                                                                                                                                                                                                                                                   |
| -> State HH             | BOOL         | R   | TRUE: Value associated with the HH event state FALSE: Value out of the range associated with the HH event state                                                                                                                                                                                                                                                                                 |
| redund.                 | BOOL         | W   | Requirement: The redundant module must be configured. Activated: Activate the channel redundancy for this channel Deactivated: Deactivate the channel redundancy for this channel Default setting: Deactivated                                                                                                                                                                                  |
| Redundancy value        | BYTE         | W   | Setting for determining the redundancy value.  Min  Max  Average  Default setting: Max  It is only displayed in the redundancy group tab!                                                                                                                                                                                                                                                       |

Table 22: Tab I/O Submodule Cl32\_01:Channels in the Hardware Editor

Page 38 of 58 HI 801 021 E Rev. 5.00

## 4.3.4 Submodule Status [DWORD]

## Coding of the Submodule Status

| Coding     | Description                                      |
|------------|--------------------------------------------------|
| 0x0000001  | Fault in hardware unit (submodule).              |
| 0x00000002 | Reset of an E/A bus                              |
| 0x00000004 | Fault detected while configuring the hardware    |
| 0x00000008 | Fault detected while verifying the coefficients  |
| 0x10000000 | Fault during AD conversion (conversion end)      |
| 0x20000000 | Faulty operating voltages                        |
| 0x40000000 | Fault during AD conversion (conversion begin)    |
| 0x80000000 | Test function transmitter monitoring overvoltage |

Table 23: Submodule Status [DWORD]

HI 801 021 E Rev. 5.00 Page 39 of 58

## 4.3.5 Diagnostic Status [DWORD]

## Coding of **Diagnostic Status**

| ID       | Description                                    |                                                                       |  |  |  |
|----------|------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| 0        | Diagnostic values are indicated consecutively. |                                                                       |  |  |  |
| 100      | Bit-coded temperature status                   |                                                                       |  |  |  |
|          | 0 = normal                                     |                                                                       |  |  |  |
|          |                                                | mperature threshold 1 has been exceeded                               |  |  |  |
|          |                                                | mperature threshold 2 has been exceeded                               |  |  |  |
|          |                                                | ult in temperature measurement                                        |  |  |  |
| 101      |                                                | mperature (10 000 digits/ °C)                                         |  |  |  |
| 200      | Bit-coded vol                                  | tage status                                                           |  |  |  |
|          | 0 = normal                                     | (04) 0 : ( )                                                          |  |  |  |
|          |                                                | - (24 V) is faulty                                                    |  |  |  |
| 004      |                                                | - (24 V) is faulty                                                    |  |  |  |
| 201      | Not used!                                      |                                                                       |  |  |  |
| 202      |                                                |                                                                       |  |  |  |
| 203      |                                                | (2001)                                                                |  |  |  |
| 300      |                                                | 24 V undervoltage (BOOL)                                              |  |  |  |
| 10011032 |                                                | channels 132                                                          |  |  |  |
|          | Coding                                         | Description                                                           |  |  |  |
|          | 0x0001                                         | Hardware unit fault (submodule) occurred.                             |  |  |  |
|          | 0x0002                                         | Reset of an E/A bus                                                   |  |  |  |
|          | 0x0400                                         | SC / OC limits exceeded or                                            |  |  |  |
|          |                                                | channel/module fault                                                  |  |  |  |
|          | 0x0800                                         | Measured values invalid (potential failure in the measurement system) |  |  |  |
|          | 0x1000                                         | Measured values out of the safety-related accuracy                    |  |  |  |
|          | Underflow/overflow of the measured value       |                                                                       |  |  |  |
|          | 0x4000                                         | Channel not configured                                                |  |  |  |
|          | 0x8000                                         | Independent measurements of both measurement system malfunctioning    |  |  |  |
| 20012032 | Fault status o                                 | ault status of the power sources 132                                  |  |  |  |
|          | Coding                                         | Description                                                           |  |  |  |
|          | 0x1000                                         | Undervoltage of transmitter monitoring                                |  |  |  |
|          | 0x2000                                         | Undervoltage of > 12 transmitter supplies                             |  |  |  |
|          | 0x4000                                         | Undervoltage of transmitter supply.                                   |  |  |  |
|          | 0x8000                                         | Overvoltage of transmitter supply.                                    |  |  |  |
|          | Oxocoo Overvoltage of transmitter supply.      |                                                                       |  |  |  |

Table 24: Diagnostic Status [DWORD]

Page 40 of 58 HI 801 021 E Rev. 5.00

#### 4.4 Connection Variants

This chapter describes the correct wiring of the module in safety-related applications. The connection variants specified here are permitted.

#### 4.4.1 Input Wiring

The inputs are wired via connector boards. Special connector boards are available for redundantly wiring the modules.

The transmitter supplies are decoupled using diodes. This ensures that the transmitter supplies of two modules can supply one transmitter if the modules are redundant to one another.

Connector boards X-CB 008 01 (with screw terminals) or X-CB 008 03 (with cable plug) can be used to perform the wiring such as described in Figure 13 and Figure 14.

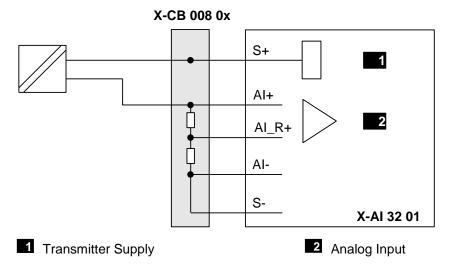



Figure 13: Single-Channel Connection of a Passive Two-Wire Transmitter

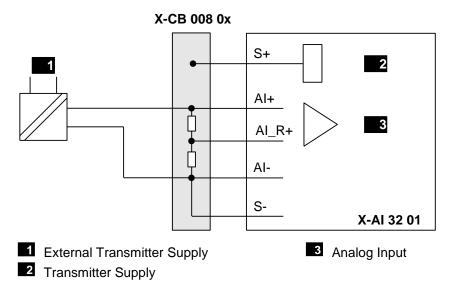



Figure 14: Single-Channel Connection of an Active Two-Wire Transmitter

HI 801 021 E Rev. 5.00 Page 41 of 58

When redundantly wired as specified in Figure 15 and Figure 16, the modules are inserted in the base plate next to each other and on a common connector board. Connector boards X-CB 008 02 (with screw terminals) or X-CB 008 04 (with cable plug) can be used.

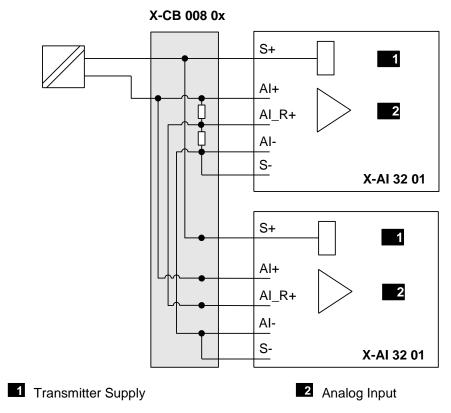



Figure 15: Redundant Connection of a Passive Two-Wire Transmitter

Page 42 of 58 HI 801 021 E Rev. 5.00

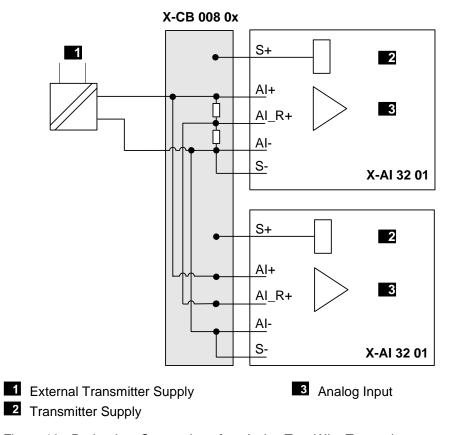
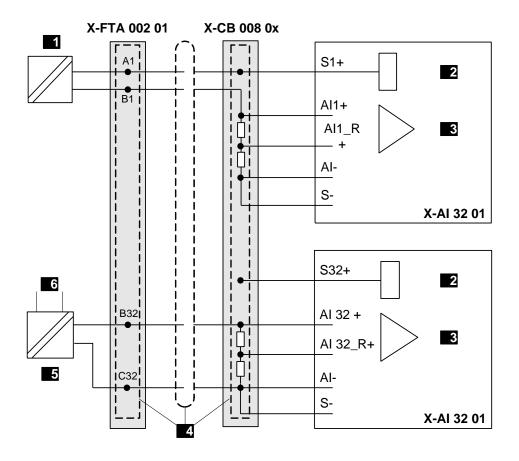




Figure 16: Redundant Connection of an Active Two-Wire Transmitter

HI 801 021 E Rev. 5.00 Page 43 of 58

## 4.4.2 Wiring Transmitters via Field Termination Assembly

Passive and active two-wire transmitters are connected via the X-FTA 002 01 as described in Figure Figure 17:. For further information, refer to the X-FTA 002 01 Manual (HI 801 117 E).



- Passive Two-Wire Transmitter
- 2 Transmitter Supply
- Analog Input

- 4 System Cable with Cable Plug
- 5 Active Two-Wire Transmitter
- 6 External Transmitter Supply

Figure 17: Connection via Field Termination Assembly

Page 44 of 58 HI 801 021 E Rev. 5.00

#### 4.4.3 Redundant Connection via Two Base Plates

The figure shows the connection of one transmitter if the redundant modules inserted in different base plates or are not located in the base plate adjacently. The instrument shunts are placed on the field termination assembly.

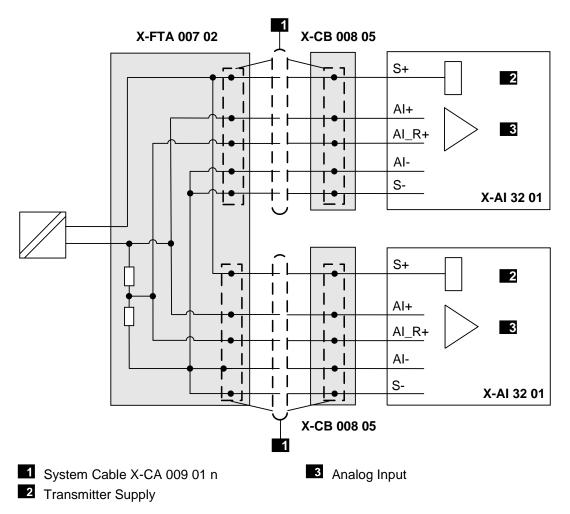



Figure 18: Redundant Connection via Two Base Plates

HI 801 021 E Rev. 5.00 Page 45 of 58

#### 4.4.4 Ex-Protection with Zener Barriers

Zener barriers can be used for EX-protection, e.g., barriers of MTL, Type 7787+ or Pepperl+Fuchs, Type Z787.

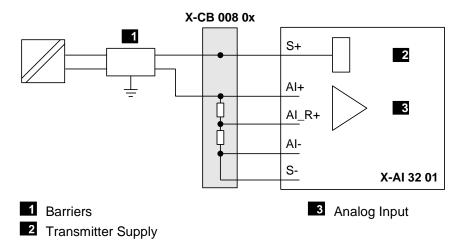



Figure 19: Single-Channel Transmitter Connection with Barrier

### 4.4.5 EX-Protection with Repeater Power Supply

Analog power supply isolators such as the H 6200A from HIMA can be implemented for EX-protection. The module's transmitter supply is not used when a power supply isolator is wired.

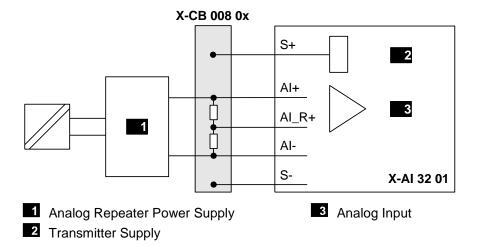



Figure 20: Single-Channel Wiring of One Analog Power Supply Isolator

Page 46 of 58 HI 801 021 E Rev. 5.00

#### 4.4.6 Characteristics of HART Communication

To ensure HART communication, a HART handheld can be connected in parallel to the transmitter. The current fluctuation caused by the HART communications is removed using filters on the analog input so that the residual error of the analog measurement is 1%.

 $oldsymbol{1}$  Higher residual error with HART communication. Remove the HART terminal directly after the diagnosis!

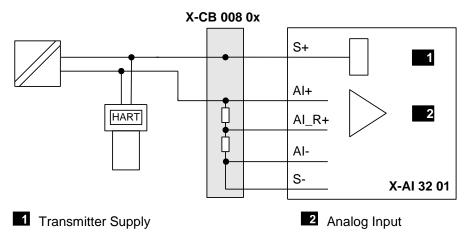



Figure 21: HART Handheld in Parallel to the Transmitter and Input Module

HI 801 021 E Rev. 5.00 Page 47 of 58

5 Operation X-Al 32 01

## 5 Operation

The module runs within a HIMax base plate and does not require any specific monitoring.

### 5.1 Handling

Direct handling of the module is not foreseen.

The module is operated from within the PADT, e.g., for forcing the analog inputs. For more details, refer to the SILworX documentation.

### 5.2 Diagnosis

LEDs on the front side of the module indicate the module state, see Chapter 3.4.2.

The diagnostic history of the module can also be read using SILworX. Chapter 4.3.4 and Chapter 4.3.5 describe the most important diagnostic statuses.

If a module is plugged in to a base plate, it generates diagnostic messages during its initialization phase indicating faults such as incorrect voltage values.

These messages only indicate a module fault if they occur after the system starts operation.

Page 48 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 6 Maintenance

#### 6 Maintenance

Defective modules must be replaced with a faultless module of the same type or with an approved replacement model.

Only the manufacturer is authorized to repair the module.

When replacing modules, observe the instructions specified in the System Manual (HI 801 001 E) and Safety Manual (HI 801 003 E).

#### 6.1 Maintenance Measures

#### 6.1.1 Loading the Operating System

HIMA is continuously improving the operating system of the module. HIMA recommends to use system downtimes to load the current version of the operating system into the module.

For detailed instructions on how to load the operating system, see the system manual and the online help. The module must be in STOP to be able to load an operating system.

The current version of the module in use is displayed in the SILworX Control Panel! The type label specifies the version when the module is delivered, see Chapter 3.3.

#### 6.1.2 Proof Test

HIMax modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the Safety Manual HI 801 003 E.

HI 801 021 E Rev. 5.00 Page 49 of 58

7 Decommissioning X-AI 32 01

# 7 Decommissioning

To decommission the module, remove it from the base plate. For more information, see *Mounting and Removing the Module*.

Page 50 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 8 Transport

## 8 Transport

To avoid mechanical damage, HIMax components must be transported in packaging.

Always store HIMax components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.

HI 801 021 E Rev. 5.00 Page 51 of 58

9 Disposal X-Al 32 01

# 9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMax hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.





Page 52 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 Appendix

# **Appendix**

## Glossary

| Term              | Description                                                                                                                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARP               | Address resolution protocol: Network protocol for assigning the network addresses to hardware addresses                                                                                                 |
| Al                | Analog input                                                                                                                                                                                            |
| AO                | Analog output                                                                                                                                                                                           |
| Connector board   | Connector board for the HIMax module                                                                                                                                                                    |
| COM               | Communication module                                                                                                                                                                                    |
| CRC               | Cyclic redundancy check                                                                                                                                                                                 |
| DI                | Digital input                                                                                                                                                                                           |
| DO                | Digital output                                                                                                                                                                                          |
| EMC               | Electromagnetic compatibility                                                                                                                                                                           |
| EN                | European norm                                                                                                                                                                                           |
| ESD               | Electrostatic discharge                                                                                                                                                                                 |
| FB                | Fieldbus                                                                                                                                                                                                |
| FBD               | Function block diagrams                                                                                                                                                                                 |
| FTT               | Fault tolerance time                                                                                                                                                                                    |
| ICMP              | Internet control message protocol: Network protocol for status or error messages                                                                                                                        |
| IEC               | International electrotechnical commission                                                                                                                                                               |
| MAC address       | Media access control address: Hardware address of one network connection                                                                                                                                |
| PADT              | Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX                                                                                                                        |
| PE                | Protective earth                                                                                                                                                                                        |
| PELV              | Protective extra low voltage                                                                                                                                                                            |
| PES               | Programmable electronic system                                                                                                                                                                          |
| R                 | Read                                                                                                                                                                                                    |
| Rack ID           | Base plate identification (number)                                                                                                                                                                      |
| Interference-free | Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed "interference-free" if it does not distort the signals of the other input circuit. |
| R/W               | Read/Write                                                                                                                                                                                              |
| SB                | System bus (module)                                                                                                                                                                                     |
| SELV              | Safety extra low voltage                                                                                                                                                                                |
| SFF               | Safe failure fraction, portion of faults that can be safely controlled                                                                                                                                  |
| SIL               | Safety integrity level (in accordance with IEC 61508)                                                                                                                                                   |
| SILworX           | Programming tool for HIMax                                                                                                                                                                              |
| SNTP              | Simple network time protocol (RFC 1769)                                                                                                                                                                 |
| SRS               | System.rack.slot addressing of a module                                                                                                                                                                 |
| SW                | Software                                                                                                                                                                                                |
| TMO               | Timeout                                                                                                                                                                                                 |
| W                 | Write                                                                                                                                                                                                   |
| r <sub>P</sub>    | Peak value of a total AC component                                                                                                                                                                      |
| Watchdog (WD)     | Time monitoring for modules or programs. If the watchdog time is exceeded, the                                                                                                                          |
|                   | module or program enters the ERROR STOP state.                                                                                                                                                          |

HI 801 021 E Rev. 5.00 Page 53 of 58

Appendix X-AI 32 01

| Index of I | Figures                                                               |    |
|------------|-----------------------------------------------------------------------|----|
| Figure 1:  | Sample Type Label                                                     | 11 |
| Figure 2:  | Block Diagram                                                         | 12 |
| Figure 3:  | Indicators                                                            | 13 |
| Figure 4:  | Views                                                                 | 16 |
| Figure 5:  | Coding Example                                                        | 19 |
| Figure 6:  | Connector Boards with Screw Terminals                                 | 20 |
| Figure 7:  | Connector Boards with Cable Plug                                      | 23 |
| Figure 8:  | Connector Board with Cable Plug, Variant X-CB 008 05                  | 25 |
| Figure 9:  | System Cable                                                          | 27 |
| Figure 10: | Example of how to Insert the Mono Connector Board                     | 30 |
| Figure 11: | Example of how to Secure the Mono Connector Board with Captive Screws | 31 |
| Figure 12: | Mounting and Removing a Module                                        | 33 |
| Figure 13: | Single-Channel Connection of a Passive Two-Wire Transmitter           | 41 |
| Figure 14: | Single-Channel Connection of an Active Two-Wire Transmitter           | 41 |
| Figure 15: | Redundant Connection of a Passive Two-Wire Transmitter                | 42 |
| Figure 16: | Redundant Connection of an Active Two-Wire Transmitter                | 43 |
| Figure 17: | Connection via Field Termination Assembly                             | 44 |
| Figure 18: | Redundant Connection via Two Base Plates                              | 45 |
| Figure 19: | Single-Channel Transmitter Connection with Barrier                    | 46 |
| Figure 20: | Single-Channel Wiring of One Analog Power Supply Isolator             | 46 |
| Figure 21: | HART Handheld in Parallel to the Transmitter and Input Module         | 47 |

Page 54 of 58 HI 801 021 E Rev. 5.00

X-AI 32 01 Appendix

| Index of  | Tables                                                        |    |
|-----------|---------------------------------------------------------------|----|
| Table 1:  | Additional Valid Manuals                                      | 5  |
| Table 2:  | Environmental Requirements                                    | 8  |
| Table 3:  | Blinking Frequencies of LEDs                                  | 14 |
| Table 4:  | Module Status Indicators                                      | 14 |
| Table 5:  | System Bus Indicators                                         | 15 |
| Table 6:  | I/O Indicators                                                | 15 |
| Table 7:  | Product Data                                                  | 16 |
| Table 8:  | Specifications for the Analog Inputs                          | 17 |
| Table 9:  | Product Data for the Transmitter Supply                       | 17 |
| Table 10: | Available Connector Boards                                    | 18 |
| Table 11: | Position of Coding Wedges                                     | 19 |
| Table 12: | Terminal Assignment for Connector Boards with Screw Terminals | 22 |
| Table 13: | Cable Plug Properties                                         | 22 |
| Table 14: | Pin Assignment for the System Cable Plug                      | 24 |
| Table 15: | Pin Assignment for the System Cable Plug                      | 26 |
| Table 16: | Cable Data X-CA 005                                           | 27 |
| Table 17: | Available System Cables X-CA 005                              | 28 |
| Table 18: | Cable Data X-CA 009                                           | 28 |
| Table 19: | Available System Cables X-CA 009                              | 28 |
| Table 20: | Module Tab in the Hardware Editor                             | 35 |
| Table 21: | Tab: I/O Submodule Al32_01 in the Hardware Editor             | 36 |
| Table 22: | Tab I/O Submodule Cl32_01:Channels in the Hardware Editor     | 38 |
| Table 23: | Submodule Status [DWORD]                                      | 39 |
| Table 24: | Diagnostic Status [DWORD]                                     | 40 |
|           |                                                               |    |

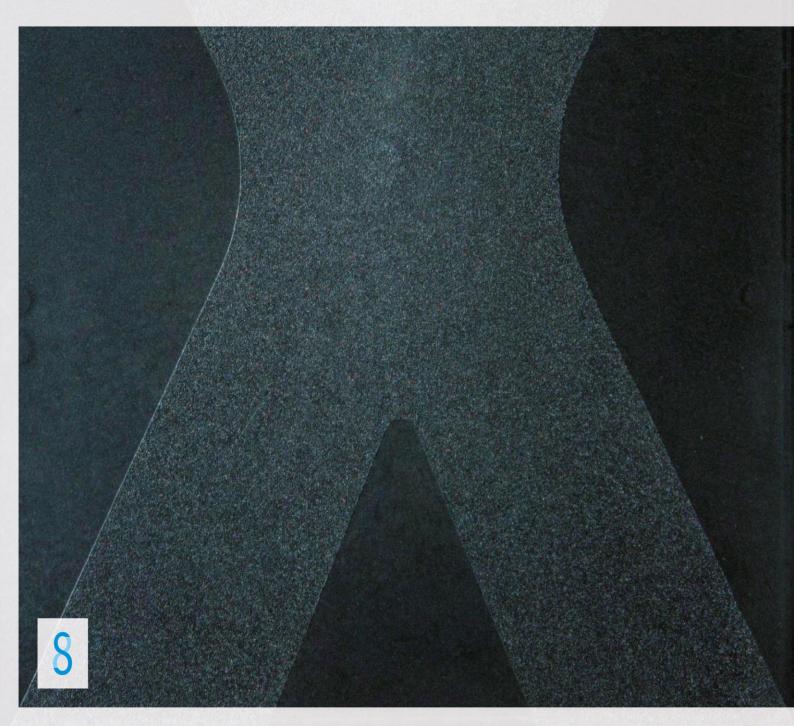
HI 801 021 E Rev. 5.00 Page 55 of 58

Appendix X-AI 32 01

## Index

| block diagram         | 12 | HAR    |
|-----------------------|----|--------|
| connector board       |    | modu   |
| with cable plug       | 23 | safety |
| with screw terminals  | 20 | speci  |
| Connector Board       | 18 | inp    |
| diagnosis             | 48 | mo     |
| I/O indicators        | 15 | tra    |
| evetem hus indicators | 15 |        |

| HAR I communication      | 47 |
|--------------------------|----|
| module status indicators | 14 |
| safety function          | 10 |
| specifications           |    |
| inputs                   | 17 |
| module                   | 16 |
| transmitter supply       | 17 |
|                          |    |


Page 56 of 58 HI 801 021 E Rev. 5.00



HI 801 021 E
© 2013 HIMA Paul Hildebrandt GmbH + Co KG
HIMax and SILworX are registered trademark of:
HIMA Paul Hildebrandt GmbH + Co KG

Albert-Bassermann-Str. 28 68782 Brühl, Germany Phone: +49 6202 709-0 Fax: +49 6202 709-107 HIMax-info@hima.com www.hima.com



